

Physics - Grade 11 S Unit Two: Mechanics

Chapter 7 Motion of a Particle in a Plane

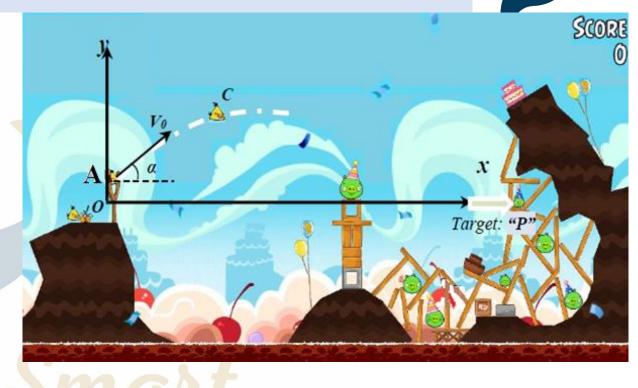
Prepared & presented by : Mr. Mohamad Seif

Quiz 1:

(10 pts)

30min

Angry bird "Chuck" represented here by point C is launched from point "A" at time $t_0 = 0$ to hit a "pig" represented by point "P" as shown in the following figure.



The position vector of (C), in the given (x O y) reference, is:

$$\vec{r} \left\{ \begin{aligned} x &= 2t \\ y &= -t^2 + 3t + 1 \end{aligned} \right\} \text{ where t in s and r in m}$$

- 1. Determine the time expressions of the velocity vector and its value of (C).
- 2. Determine the expressions of the acceleration vectors and its value of (C).
- 3. Determine the launch speed and angle of "Chuck".
- 4. Determine the coordinates of the highest point 'B' reached by (C).
- 5. Determine the tangential acceleration vector on the highest point 'B'.

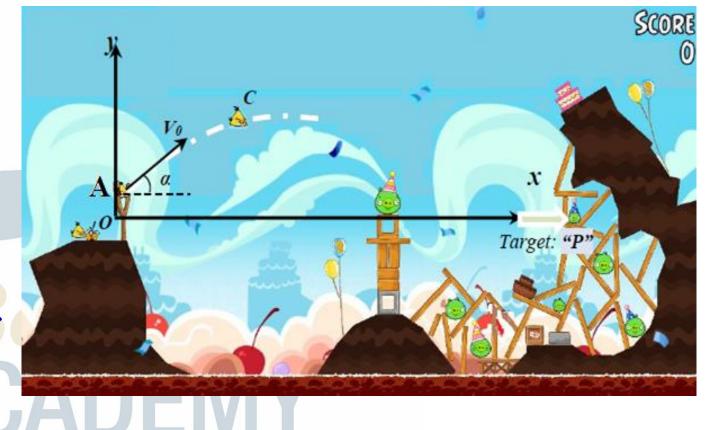
1.Determine the time expressions of the velocity vector and its value of (C).

$$\vec{\mathbf{r}} = \begin{cases} x = 2t \\ y = -t^2 + 3t + 1 \end{cases}$$

$$\vec{\mathbf{r}} = x \vec{\mathbf{i}} + y \vec{\mathbf{j}}$$

$$\vec{\mathbf{r}} = 2t \cdot \vec{\mathbf{i}} + (-t^2 + 3t + 1) \vec{\mathbf{j}}$$

$$\vec{\mathbf{v}} = \vec{\mathbf{r}}'$$



$$\vec{v} = 2.\vec{i} + (-2t + 3).\vec{j}$$

$$\vec{v} = 2.\vec{i} + (-2t + 3).\vec{j}$$

$$V = \sqrt{V_x^2 + V_y^2}$$

$$V = \sqrt{(2)^2 + (-2t + 3)^2}$$

$$V = \sqrt{4 + 4t^2 - 12t + 9}$$

$$SN = \sqrt{4t^2 - 12t + 13}$$

$$DFMY$$

$$\vec{V} = 2.\vec{i} + (-2t + 3).\vec{j}$$

2.Determine the expressions of the acceleration vectors and

its value of (C

$$\vec{a} = \vec{V}'$$

$$\vec{a} = 0.\vec{i} - 2.\vec{j}$$

$$\vec{a} = -2.\vec{j}$$

$a = \sqrt{a_x^2 + a_y^2}$

$$Sm^2 = \sqrt{(0)^2 + (2)^2}$$

$$a=2m/s^2$$

$$\overrightarrow{V} = 2.\overrightarrow{i} + (-2t + 3).\overrightarrow{j}; \overrightarrow{a} = -2.\overrightarrow{j}$$

3. Determine the launch speed and angle of "Chuck"

$$\overrightarrow{\mathbf{v_0}} = 2 \, \overrightarrow{\mathbf{i}} + (-2 \times \mathbf{0} + 3) \overrightarrow{\mathbf{j}}$$

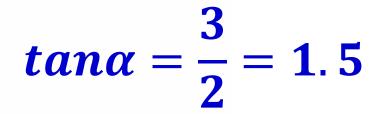
$$\overrightarrow{\mathbf{v_0}} = 2 \overrightarrow{\mathbf{i}} + 3 \overrightarrow{\mathbf{j}}$$
 AG

$$\overrightarrow{\mathbf{v_0}} = 2 \overrightarrow{\mathbf{i}} + 3 \overrightarrow{\mathbf{j}}$$

$$V_0 = \sqrt{V_{0x}^2 + V_{0y}^2}$$

$$V_0 = \sqrt{2^2 + 3^2}$$

$$V_0 = 3.6 \text{m/s}$$



$$\tan \alpha = \frac{\text{opp}}{\text{adj}} = \frac{v_{0y}}{v_{0x}}$$

$$\alpha = \tan^{-1}(1.5) = 56^{\circ}$$

4. Determine the coordinates of the highest point 'B' reached by (C).

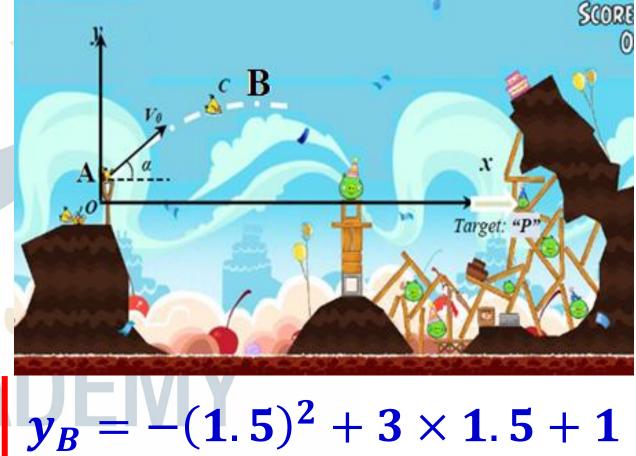
At B:
$$v_y = 0$$

 $-2t + 3 = 0$

$$3 = 2t$$
 \Rightarrow $t = \frac{3}{2} = 1.5 s$

$$\vec{\mathbf{r}} = \begin{cases} x = 2t \\ y = -t^2 + 3t + 1 \end{cases}$$

$$x_{R} = 2 \times 1.5 = 3m$$



$$y_B = -(1.5)^2 + 3 \times 1.5 + 1$$

$$y_B = 3.25 m$$

$$\vec{v} = 2.\vec{i} + (-2t + 3).\vec{j}; V = \sqrt{4t^2 - 12t + 13}$$

5. Determine the tangential acceleration vector on the highest

point 'B'.

$$a_t = v'$$

$$a_t = \frac{8t - 12}{2\sqrt{4t^2 - 12t + 13}}$$

$$a_t = \frac{4t - 6}{\sqrt{4t^2 - 12t + 13}}$$

$$\overrightarrow{v} = v. \overrightarrow{u_t}$$
 \Rightarrow $\overrightarrow{u_t} = \frac{v}{v}$

$$\vec{u_t} = \frac{2\vec{i} + (-2t+3)\vec{j}}{\sqrt{4t^2 - 12t + 13}}$$

$$a_t = \frac{4t - 6}{\sqrt{4t^2 - 12t + 13}}$$

On B; t = 1.5 s

$$a_t = \frac{4(1.5) - 6}{\sqrt{4(1.5)^2 - 12(1.5) + 13}}$$

$$a_t = \frac{0}{\sqrt{13}} \setminus ACA$$

$$a_t = 0$$

$$\overrightarrow{u_t} = \frac{2 \vec{i} + (-2t + 3)\vec{j}}{\sqrt{4t^2 - 12t + 13}}$$

$$\overrightarrow{a_t} = a_t \times \overrightarrow{u_t}$$

$$\begin{array}{c}
Sma_{\overline{a}t} = (0) \times \overline{u_t} \\
DEMY
\end{array}$$

$$\overrightarrow{a_t} = \overrightarrow{0}$$

- 6.Deduce the characteristics of the normal acceleration vector on the highest point 'B'.
- 7. Determine the equation of the trajectory followed by (C).
- 8.Knowing that "P" is located at (9m; 0.5m); would (C) hit its target point? Justify

Be Smart ACADEMY

$$\overrightarrow{a_t} = \overrightarrow{0}; \overrightarrow{a} = 2.\overrightarrow{j}$$

6.Deduce the characteristics of the normal acceleration vector on the highest point 'B'.

$$\overrightarrow{a} = \overrightarrow{a_t} + \overrightarrow{a_n}$$

$$\overrightarrow{a_n} = \overrightarrow{a} - \overrightarrow{a_t}$$

$$\overrightarrow{a_n} = -2 \overrightarrow{j} - \overrightarrow{0}$$

$$\overrightarrow{a_n} = -2 \overrightarrow{j}$$

- Origin: point 'B'
- Direction: down
- Line of action: vertical
- Magnitude: $2 m / s^2$

DEMY

7. Determine the equation of the trajectory followed

$$\vec{r} = \begin{cases} x = 2t \\ y = -t^2 + 3t + 1 \end{cases}$$

$$x = 2t$$

$$=\frac{x}{2}$$

Substitute x in the expression of y

$$y = -t^2 + 3t + 1$$

$$y = -(\frac{x}{2})^2 + 3(\frac{x}{2}) + 1$$

$$y = -\frac{x^2}{4} + \frac{3}{2}x + 1$$

$$y = -0.25x^2 + 1.5x + 1$$

Parabolic shape

8.Knowing that "P" is located at (9m; – 0.5m); would (C) hit its target point? Justify.

$$y = -0.25x^2 + 1.5x + 1$$

$$-0.5 = -0.25 \times 9^2 + 1.5 \times 9 + 1$$

$$-0.5 = -20.25 + 13.5 + 1$$

$$-0.5 = -5.75$$
 impossible

The point "P" doesn't exist on the trajectory, Then (C) doesn't hit its target point "P"



The motion of a particle is defined by:

$$\vec{r} = 2sin(3t) \cdot \vec{i} + 2cos(3t) \cdot \vec{j}$$
, where [r and t in SI]

- 1.Determine the speed of the particle at any time t.
- 2. What is the shape of its trajectory?
- 3.Deduce that the motion is U.C.M.
- 4. Locate the particle at the instants t = 0 s and $t = \frac{\pi}{6}$ s.
- 5.Determine the average velocity vector between the above instants.
- 6. Find a relation between the position and the acceleration vectors.

$$\vec{r} = 2\sin(3t) \cdot \vec{i} + 2\cos(3t) \cdot \vec{j}$$

1. Determine the speed of the particle at any time t.

The velocity vector is the derivative of position vector:

$$\vec{\mathbf{v}} = \vec{\mathbf{r}}'$$

$$\vec{\mathbf{V}} = [\mathbf{2} \times \mathbf{3}\cos(3t)].\vec{\mathbf{i}} - [\mathbf{2} \times \mathbf{3}\sin(3t)].\vec{\mathbf{j}}$$

$$\vec{\mathbf{V}} = \mathbf{6}\cos(3t).\vec{\mathbf{i}} - \mathbf{6}\sin(3t).\vec{\mathbf{j}}$$

$$\vec{r} = 2\sin(3t) \cdot \vec{i} + 2\cos(3t) \cdot \vec{j}; \vec{V} = 6\cos(3t) \cdot \vec{i} - 6\sin(3t) \cdot \vec{j}$$

$$\sqrt{V_x^2 + V_y^2}$$

$$v = \sqrt{(6\cos(3t))^2 + (6\sin(3t))^2}$$

$$v = \sqrt{36\cos^2(3t) + 36\sin^2(3t)}$$

$$v = \sqrt{36[\cos^2(3t) + \sin^2(3t)]}$$

$$\cos^2(\alpha) + \sin^2(\alpha) = 1$$

$$\begin{array}{c}
Smart \\
DEM v = \sqrt{36(1)}
\end{array}$$

$$v = 6m/s$$

2. What is the shape of its trajectory?

$$\sin(3t) = \frac{x}{2} \implies \sin^{2}(3t) = \frac{x^{2}}{4}$$

$$y = 2\cos(3t)$$

$$\cos^{2}(3t) + \sin^{2}(3t) = \frac{x^{2}}{4} + \frac{y^{2}}{4}$$

$$\cos^{2}(3t) + \sin^{2}(3t) = 1$$

$$\cos(3t) = \frac{y}{2} \Rightarrow \cos^2(3t) = \frac{y^2}{4}$$

Add the two equations:

$$\cos^{2}(3t) + \sin^{2}(3t) = \frac{x^{2}}{4} + \frac{y^{2}}{4}$$

$$\cos^{2}(3t) + \sin^{2}(3t) = 1$$

$$1 = \frac{x^{2}}{4} + \frac{y^{2}}{4}$$

$$x^{2} + y^{2} - 2ax - 2by + c = 0$$
Circular shape

Uniform motion

3. Deduce that the motion is U.C.M.

Since the speed is constant at v = 6 m/s

Since the trajectory is circular shape then: Circular motion

Then the motion is **U.C.M**

$\vec{r} = 2\sin(3t) \cdot \vec{i} + 2\cos(3t) \cdot \vec{j}$

4. Locate the particle at the instants t = 0 s and $t = \frac{\pi}{6}$ s.

For
$$t = 0$$
:

$$x = 2sin(3t) \implies x = 2sin(3 \times 0)$$

$$\mathbf{x} = 2\sin(3 \times \mathbf{0})$$

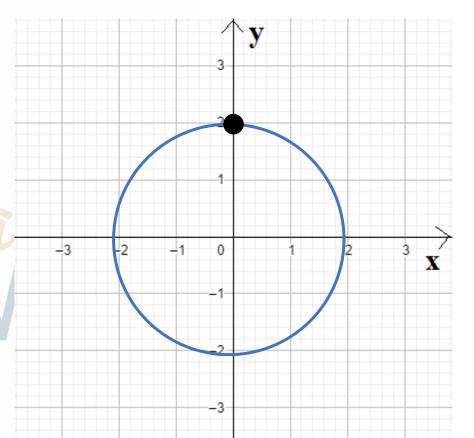
$$\mathbf{x} = 2\sin(\mathbf{0}) = \mathbf{0}$$

$$y = 2\cos(3t) \Rightarrow y = 2\cos(0)$$

$$y = 2\cos(0)$$

$$r=2$$
 AUAU

The particle is at point (0;2)



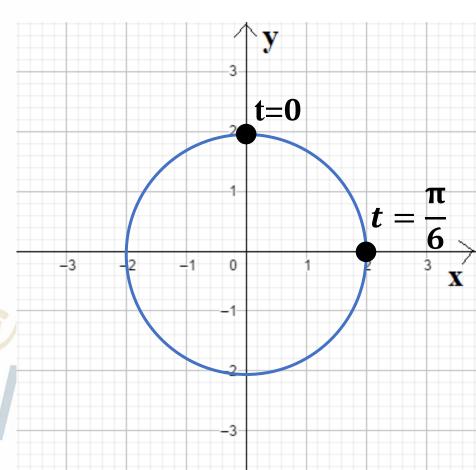
For
$$t = \frac{\pi}{6}s$$
:

$$x = 2sin(3 \times \frac{\pi}{6}) = 2sin(\frac{\pi}{2}) = 2$$

$$y = 2\cos(3 \times \frac{\pi}{6}) = 2\cos(\frac{\pi}{2}) = 0$$

The particle is at point (2;0)

ADEN



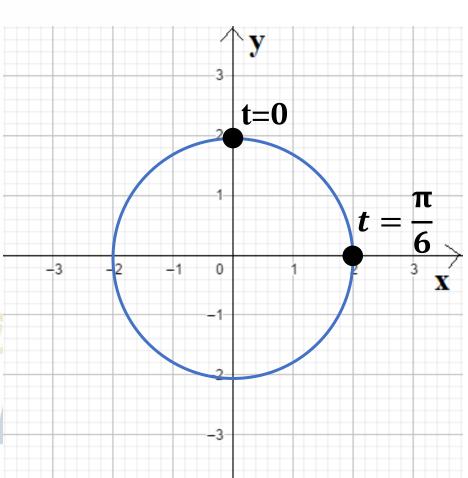
5. Determine the average velocity vector between the above instants

$$\overrightarrow{v_{av}} = \frac{\overrightarrow{\Delta r}}{\Delta t} = \frac{\overrightarrow{r_2} - \overrightarrow{r_1}}{t_2 - t_1}$$

$$\overrightarrow{r_1} = \overrightarrow{r_{(t=0)}} = 0 \ \overrightarrow{\iota} + 2 \overrightarrow{J}$$

$$\overrightarrow{r_2} = \overrightarrow{r_{(t=\frac{\pi}{6})}} = 2 \vec{i} + 0 \vec{j}$$

$$\overrightarrow{v_{av}} = \frac{\overrightarrow{r_2} - \overrightarrow{r_1}}{t_2 - t_1} = \frac{2\overrightarrow{i} - 2\overrightarrow{j}}{\frac{\pi}{6} - 0}$$



$$\overrightarrow{v_{av}} = 3.81 \ \overrightarrow{i} - 3.81 \ \overrightarrow{j}$$

$$\vec{r} = 2\sin(3t) \cdot \vec{i} + 2\cos(3t) \cdot \vec{j}; \vec{V} = 6\cos(3t) \cdot \vec{i} - 6\sin(3t) \cdot \vec{j}$$

6. Find a relation between the position and the acceleration vectors.

$$\vec{a} = \vec{v}'$$

$$\vec{a} = 6 \times 3\sin(3t) \cdot \vec{i} - 6 \times 3\sin(3t) \cdot \vec{j}$$

$$\vec{a} = -18\sin(3t)\vec{i} - 18\cos(3t)\vec{j}$$

$$\vec{a} = -9[2\sin(3t)\vec{i} + 2\cos(3t)\vec{j}]$$

$$\vec{a} = -9 \vec{r}$$

